Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 382, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553562

RESUMO

Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.


Assuntos
Autofagossomos , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Autofagossomos/metabolismo , Autofagia/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
2.
RSC Adv ; 14(2): 1056-1061, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174235

RESUMO

Concurrent strength-ductility improvement of HfMoTaTiZr is achieved via Cr addition and the underlying strengthening mechanism was discussed. 4.2 at% Cr addition into HfMoTaTiZr led to the formation of a Laves phase, in addition to the BCC phase. The hardness of HfMoTaTiZrCr0.5 is 535.8 Hv0.3, 56.96% higher than the reference alloy HfMoTaTiZr. The yield strength and fracture strain of HfMoTaTiZrCr0.5 reach 1750.6 ± 80.3 MPa and 14.0 ± 2.9%, respectively, 207.5 MPa and 20.6% higher than HfMoTaTiZr. Solid solution hardening and the presence of the intermetallic Laves phase are believed to be responsible for the enhancement in strength and the formation of a reticulated structure of the Laves phase in HfMoTaTiZrCr0.5 results in the improvement in ductility.

3.
Cell Rep ; 42(11): 113402, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37943659

RESUMO

Oxidative stress-induced autophagy helps to prevent cellular damage and to maintain homeostasis. However, the regulatory pathway that initiates autophagy remains unclear. We previously showed that reactive oxygen species (ROS) function as signaling molecules to activate the ATM-CHK2 pathway and promote autophagy. Here, we find that the E3 ubiquitin ligase TRIM32 functions downstream of ATM-CHK2 to regulate ATG7 ubiquitination. Under metabolic stress, ROS induce ATM phosphorylation at S1981, which in turn phosphorylates CHK2 at T68. We show that CHK2 binds and phosphorylates TRIM32 at the S55 site, which then mediates K63-linked ubiquitination of ATG7 at the K45 site to initiate autophagy. In addition, Chk2-/- mice show an aggravated infarction phenotype and reduced phosphorylation of TRIM32 and ubiquitination of ATG7 in a stroke model. We propose a molecular mechanism for autophagy initiation by ROS via the ATM-CHK2-TRIM32-ATG7 axis to maintain intracellular homeostasis and to protect cells exposed to pathological conditions from stress-induced tissue damage.


Assuntos
Estresse Oxidativo , Ubiquitina-Proteína Ligases , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia
4.
Oncogene ; 42(22): 1843-1856, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081042

RESUMO

Oncogenic stress induces DNA damage repair (DDR) that permits escape from mitotic catastrophe and allows early precursor lesions during the evolution of cancer. SAMHD1, a dNTPase protecting cells from viral infections, has been recently found to participate in DNA damage repair process. However, its role in tumorigenesis remains largely unknown. Here, we show that SAMHD1 is up-regulated in early-stage human carcinoma tissues and cell lines under oxidative stress or genotoxic insults. We further demonstrate that de-ubiquitinating enzyme USP7 interacts with SAMHD1 and de-ubiquitinates it at lysine 421, thus stabilizing SAMHD1 protein expression for further interaction with CtIP for DDR, which promotes tumor cell survival under genotoxic stress. Furthermore, SAMHD1 levels positively correlates with USP7 in various human carcinomas, and is associated with an unfavorable survival outcome in patients who underwent chemotherapy. Moreover, USP7 inhibitor sensitizes tumor cells to chemotherapeutic agents by decreasing SAMHD1 in vitro and in vivo. These findings suggest that de-ubiquitination of SAMHD1 by USP7 promotes DDR to overcome oncogenic stress and affect chemotherapy sensitivity.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Ubiquitinação
5.
Genetics ; 223(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36722258

RESUMO

The auxin-inducible degradation system has been widely adopted in the Caenorhabditis elegans research community for its ability to empirically control the spatiotemporal expression of target proteins. This system can efficiently degrade auxin-inducible degron (AID)-tagged proteins via the expression of a ligand-activatable AtTIR1 protein derived from A. thaliana that adapts target proteins to the endogenous C. elegans proteasome. While broad expression of AtTIR1 using strong, ubiquitous promoters can lead to rapid degradation of AID-tagged proteins, cell type-specific expression of AtTIR1 using spatially restricted promoters often results in less efficient target protein degradation. To circumvent this limitation, we have developed an FLP/FRT3-based system that functions to reanimate a dormant, high-powered promoter that can drive sufficient AtTIR1 expression in a cell type-specific manner. We benchmark the utility of this system by generating a number of tissue-specific FLP-ON::TIR1 drivers to reveal genetically separable cell type-specific phenotypes for several target proteins. We also demonstrate that the FLP-ON::TIR1 system is compatible with enhanced degron epitopes. Finally, we provide an expandable toolkit utilizing the basic FLP-ON::TIR1 system that can be adapted to drive optimized AtTIR1 expression in any tissue or cell type of interest.


Assuntos
Caenorhabditis elegans , Ácidos Indolacéticos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácidos Indolacéticos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Proteólise , Proteínas de Arabidopsis
6.
Proc Natl Acad Sci U S A ; 120(5): e2217992120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689659

RESUMO

SWItch/sucrose non-fermenting (SWI/SNF) complexes are a family of chromatin remodelers that are conserved across eukaryotes. Mutations in subunits of SWI/SNF cause a multitude of different developmental disorders in humans, most of which have no current treatment options. Here, we identify an alanine-to-valine-causing mutation in the SWI/SNF subunit snfc-5 (SMARCB1 in humans) that prevents embryonic lethality in Caenorhabditis elegans nematodes harboring a loss-of-function mutation in the SWI/SNF subunit swsn-1 (SMARCC1/2 in humans). Furthermore, we found that the combination of this specific mutation in snfc-5 and a loss-of-function mutation in either of the E3 ubiquitin ligases ubr-5 (UBR5 in humans) or hecd-1 (HECTD1 in humans) can restore development to adulthood in swsn-1 loss-of-function mutants that otherwise die as embryos. Using these mutant models, we established a set of 335 genes that are dysregulated in SWI/SNF mutants that arrest their development embryonically but exhibit near wild-type levels of expression in the presence of suppressor mutations that prevent embryonic lethality, suggesting that SWI/SNF promotes development by regulating some subset of these 335 genes. In addition, we show that SWI/SNF protein levels are reduced in swsn-1; snfc-5 double mutants and partly restored to wild-type levels in swsn-1; snfc-5; ubr-5 triple mutants, consistent with a model in which UBR-5 regulates SWI/SNF levels by tagging the complex for proteasomal degradation. Our findings establish a link between two E3 ubiquitin ligases and SWI/SNF function and suggest that UBR5 and HECTD1 could be potential therapeutic targets for the many developmental disorders caused by missense mutations in SWI/SNF subunits.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ubiquitinas/metabolismo
7.
PLoS Genet ; 18(1): e1009981, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982771

RESUMO

Chromatin remodelers such as the SWI/SNF complex coordinate metazoan development through broad regulation of chromatin accessibility and transcription, ensuring normal cell cycle control and cellular differentiation in a lineage-specific and temporally restricted manner. Mutations in genes encoding the structural subunits of chromatin, such as histone subunits, and chromatin regulating factors are associated with a variety of disease mechanisms including cancer metastasis, in which cancer co-opts cellular invasion programs functioning in healthy cells during development. Here we utilize Caenorhabditis elegans anchor cell (AC) invasion as an in vivo model to identify the suite of chromatin agents and chromatin regulating factors that promote cellular invasiveness. We demonstrate that the SWI/SNF ATP-dependent chromatin remodeling complex is a critical regulator of AC invasion, with pleiotropic effects on both G0 cell cycle arrest and activation of invasive machinery. Using targeted protein degradation and enhanced RNA interference (RNAi) vectors, we show that SWI/SNF contributes to AC invasion in a dose-dependent fashion, with lower levels of activity in the AC corresponding to aberrant cell cycle entry and increased loss of invasion. Our data specifically implicate the SWI/SNF BAF assembly in the regulation of the G0 cell cycle arrest in the AC, whereas the SWI/SNF PBAF assembly promotes AC invasion via cell cycle-independent mechanisms, including attachment to the basement membrane (BM) and activation of the pro-invasive fos-1/FOS gene. Together these findings demonstrate that the SWI/SNF complex is necessary for two essential components of AC invasion: arresting cell cycle progression and remodeling the BM. The work here provides valuable single-cell mechanistic insight into how the SWI/SNF assemblies differentially contribute to cellular invasion and how SWI/SNF subunit-specific disruptions may contribute to tumorigeneses and cancer metastasis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas Cromossômicas não Histona/genética , Mutação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Membrana Basal/metabolismo , Sistemas CRISPR-Cas , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular , Movimento Celular , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Modelos Animais , Fenótipo , Análise de Célula Única
8.
J Genet Genomics ; 48(8): 706-715, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34376377

RESUMO

Juvenile hormone (JH) is one of the most important hormones in insects since it is essential for insect development. The mechanism by which JH affects the central nervous system still remains a mystery. In this study, we demonstrate that one of the JH receptors, Methoprene-tolerant (Met), is important for the control of neurite development and sleep behavior in Drosophila. With the identification of Met-expressing glial cells, the mechanism that Met negatively controls the mushroom body (MB) ß lobes fusion and positively maintains pigment-dispersing factor sLNvs projection pruning has been established. Furthermore, despite the developmental effects, Met can also maintain nighttime sleep in a development-independent manner through the α/ß lobe of MB. Combining analyses of neuronal morphology and entomological behavior, this study advances our understanding of how the JH receptor regulates the nervous system.


Assuntos
Metoprene
9.
Postgrad Med J ; 95(1127): 487-492, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31292280

RESUMO

PURPOSE OF THE STUDY: Genome-wide association studies have revealed an association of ADAMTS7 polymorphisms with the risk of cardiovascular diseases. Nonetheless, the role of ADAMTS7 polymorphisms on myocardial infarction (MI) risk remains poorly understood. Here, we aim to evaluate the effect of ADAMTS7 tag single nucleotide polymorphisms (SNPs) on individual susceptibility to MI. STUDY DESIGN: Genotyping of the four tagSNPs (rs1994016, rs3825807, rs4380028 and rs7173743) was performed in 232 MI cases and 661 control subjects using PCR-ligase detection reaction (LDR) method. The association of these four tagSNPs with MI risk was performed with SPSS software. RESULTS: Multivariate logistic regression analysis showed that ADAMTS7 tagSNP rs3825807 exhibited a significant effect on MI risk. Compared with the TT homozygotes, the CT genotype (OR1.93, 95% CI1.30to 2.85, Pc=0.004) and the combined CC/CT genotypes (OR1.70, 95% CI1.16 to 2.50, Pc=0.028) were statistically significantly associated with the increased risk for MI. Further stratified analysis revealed a more significant association with MI risk among older subjects, hypertensives, non-diabetics and patients with hyperlipidaemia. Consistently, the haplotype rs1994016T-rs3825807C containing rs3825807 C allele exhibited increased MI risk (OR1.52, 95% CI1.10 to 2.10, p=0.010). However, we did not detect any association of the other three tagSNPs with MI risk. CONCLUSIONS: Our finding suggest that ADAMTS7 tagSNP rs3825807 contributes to MI susceptibility in the Chinese Han population. Further studies are necessary to confirm the general validity of our findings and to clarify the underlying mechanism for this association.


Assuntos
Proteína ADAMTS7/genética , Infarto do Miocárdio/genética , Estudos de Casos e Controles , China/etnologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/etnologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco
10.
Sensors (Basel) ; 18(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227685

RESUMO

Mobile Edge Computing (MEC) has evolved into a promising technology that can relieve computing pressure on wireless devices (WDs) in the Internet of Things (IoT) by offloading computation tasks to the MEC server. Resource management and allocation are challenging because of the unpredictability of task arrival, wireless channel status and energy consumption. To address such a challenge, in this paper, we provide an energy-efficient joint resource management and allocation (ECM-RMA) policy to reduce time-averaged energy consumption in a multi-user multi-task MEC system with hybrid energy harvested WDs. We first formulate the time-averaged energy consumption minimization problem while the MEC system satisfied both the data queue stability constraint and energy queue stability constraint. To solve the stochastic optimization problem, we turn the problem into two deterministic sub-problems, which can be easily solved by convex optimization technique and linear programming technique. Correspondingly, we propose the ECM-RMA algorithm that does not require priori knowledge of stochastic processes such as channel states, data arrivals and green energy harvesting. Most importantly, the proposed algorithm achieves the energy consumption-delay trade-off as [ O ( 1 / V ) , O ( V ) ] . V, as a non-negative weight, which can effectively control the energy consumption-delay performance. Finally, simulation results verify the correctness of the theoretical analysis and the effectiveness of the proposed algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...